
1IEICE Transactions on Information and Systems,
vol.E94-D, no.6, pp.1333-1336, 2011.

Least-Squares Independence Test

Masashi Sugiyama
Tokyo Institute of Technology, Japan

PRESTO, Japan Science and Technology Agency, Tokyo, Japan
sugi@cs.titech.ac.jp

http://sugiyama-www.cs.titech.ac.jp/~sugi/

Taiji Suzuki
The University of Tokyo, Tokyo, Japan

s-taiji@stat.t.u-tokyo.ac.jp

Abstract

Identifying the statistical independence of random variables is one of the important
tasks in statistical data analysis. In this paper, we propose a novel non-parametric
independence test based on a least-squares density ratio estimator. Our method,
called least-squares independence test (LSIT), is distribution-free, and thus it is
more flexible than parametric approaches. Furthermore, it is equipped with a model
selection procedure based on cross-validation. This is a significant advantage over
existing non-parametric approaches which often require manual parameter tuning.
The usefulness of the proposed method is shown through numerical experiments.
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1 Introduction

Identifying the statistical independence of random variables is one of the fundamental
tasks in statistical data analysis. Independence tests can be used for various purposes
such as feature selection [9] and causal inference [10].

A traditional independence measure is the Pearson correlation coefficient, which can
be used for detecting linear dependency. Thus, it is useful for Gaussian data, although
the Gaussian assumption is rarely fulfilled in practice. Recently, kernel-based indepen-
dence measures have been studied in order to overcome the weakness of the Pearson
correlation coefficient. The Hilbert-Schmidt independence criterion (HSIC) [4] utilizes
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cross-covariance operators on universal reproducing kernel Hilbert spaces (RKHSs) [7],
which is an infinite-dimensional generalization of covariance matrices. HSIC allows ef-
ficient detection of non-linear dependency by making use of the reproducing property
of RKHSs [1]. However, HSIC has a critical weakness that its performance depends on
the choice of RKHSs and there is no theoretically justified way to determine the RKHS
properly. In practice, using the Gaussian RKHS with width set to the median distance
between samples is a popular heuristic [4].

Another popular independence criterion would be mutual information [2]. In this
paper, we consider a squared-loss variant of mutual information and use its estimator least-
squares mutual information (LSMI) [9] for independence test. LSMI is also distribution-
free as HSIC, but it is equipped with a natural model selection procedure based on cross-
validation, which is an advantage over HSIC. Through experiments, we show the usefulness
of the LSMI-based independence test called least-squares independence test (LSIT).

2 Least-Squares Independence Test

In this section, we propose a novel non-parametric independence test.

2.1 Formulation

Let x (∈ X ⊂ Rdx) be an input feature and y (∈ Y ⊂ Rdy) be an output feature, which
follow a joint probability distribution with density p(x,y). Suppose we are given a set of
i.i.d. paired samples {(xi,yi)}ni=1. Our goal is to test whether x and y are statistically
independent or not, based on the samples {(xi,yi)}ni=1.

For independence test, we employ the squared-loss mutual information (SMI) defined
as follows:

SMI :=
1

2

∫∫
p(x)p(y)

(
p(x,y)

p(x)p(y)
− 1

)2

dxdy, (1)

where p(x) and p(y) are marginal densities of x and y, respectively. SMI is the Pearson
divergence [6] from the joint density p(x,y) to the product of marginals p(x)p(y), and
SMI is zero if and only if x and y are statistically independent. Hence, SMI can be used
for detecting the statistical independence of random variables.

SMI includes unknown probability densities p(x,y), p(x), and p(y), and thus it cannot
be directly computed. A naive approach is to estimate the densities p(x,y), p(x), and
p(y), and plug the estimated densities in Eq.(1). However, since density estimation is
known to be a hard task and division by estimated densities can magnify the estimation
error, we consider estimating the following density ratio function directly:

r(x,y) :=
p(x,y)

p(x)p(y)
. (2)
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Once an estimator of the density ratio r̂(x,y) is obtained, SMI can be approximated using
samples as follows:

ŜMI :=
1

n

n∑
i=1

r̂(xi,yi)−
1

2n2

n∑
i,j=1

r̂(xi,yj)
2 − 1

2
. (3)

2.2 Least-Squares Mutual Information

Here we explain the least-squares mutual information (LSMI) method [9], which directly
learns r(x,y) from data samples without going through density estimation of p(x,y),
p(x), and p(y).

Let us approximate the density ratio (2) using the following model:

r̂(x,y) =
b∑

ℓ=1

αℓψℓ(x,y) = α
⊤ψ(x,y),

where ψ(x,y) : Rdx × Rdy → Rb is a non-negative basis function vector, α (∈ Rb) is a
parameter vector, and ⊤ denotes the transpose.

We determine the parameter α so that the following squared-error J0 is minimized:

J0(α) :=
1

2

∫∫
(r̂(x,y)− r(x,y))2 p(x)p(y)dxdy

=
1

2

∫∫
r̂(x,y)2p(x)p(y)dxdy

−
∫∫

r̂(x,y)p(x,y)dxdy + Const.

Let us denote the first two terms by J . Since J contains the expectations over unknown
densities p(x,y), p(x), and p(y), we approximate the expectations by empirical averages.
By including an ℓ2-regularizer, the LSMI optimization problem is formulated as follows.

α̂ := argmin
α∈Rb

[
1

2
α⊤Ĥα−α⊤ĥ+

λ

2
α⊤α

]
, (4)

where λ (≥ 0) is the regularization parameter that controls the strength of regularization,
and

Ĥ :=
1

n2

n∑
i,j=1

ψ(xi,yj)ψ(xi,yj)
⊤,

ĥ :=
1

n

n∑
i=1

ψ(xi,yi).

The solution α̂ can be analytically obtained as

α̂ = (Ĥ + λIb)
−1ĥ, (5)
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where Ib is the b-dimensional identity matrix. Finally, the density ratio estimator r̂(x) is
given by

r̂(x) := α̂⊤ψ(x).

Once a density ratio estimator r̂(x,y) is obtained, SMI can be approximated by Eq.(3).
Thanks to the analytic-form expression, LSMI is computationally very efficient. Fur-

thermore, the above least-squares density ratio estimator was shown to possess the optimal
non-parametric convergence rate and optimal numerical stability [8, 5].

2.3 Basis Function Choice and Model Selection

Given that both {xi}ni=1 and {yi}ni=1 are normalized so that every element of x and y has
unit variance, we use the following basis functions:

ψℓ(x,y) =


exp

(
−∥x− xℓ∥2

2σ2

)
exp

(
−∥y − yℓ∥2

2σ2

)
for regression,

exp

(
−∥x− xℓ∥2

2σ2

)
δ(y = yℓ) for classification,

where δ(c) = 1 if the condition c is true; otherwise δ(c) = 0. We may also include a
constant basis function ϕ0(x,y) = 1 to the above kernel basis functions.

The practical performance of LSMI depends on the choice of the kernel width σ and the
regularization parameter λ. Model selection of LSMI is possible based on cross-validation
with respect to the criterion J . More specifically, the sample set Z = {(xi,yi)}ni=1 is
divided into M disjoint sets {Zm}Mm=1. Then an LSMI solution r̂m(x) is obtained using
Z\Zm (i.e., all samples without Zm), and its J-score for the hold-out samples Zm is
computed as

ĴCV
m :=

1

2|Zm|
∑

(x,y)∈Zm

r̂m(x,y)
2 − 1

|Zm|
∑

(x,y)∈Zm

r̂m(x,y),

where |Z| denotes the number of elements in the set Z. This procedure is repeated for

m = 1, . . . ,M , and the average score ĴCV := 1
M

∑M
m=1 Ĵ

CV
m is computed. Finally, the

model (the kernel width σ and the regularization parameter λ in the current setup) that

minimizes ĴCV is chosen as the most suitable one.

2.4 Permutation Test

Our independence test procedure is based on the permutation test [3].
We first run LSMI using the original datasets Z = {(xi,yi)}ni=1, and obtain an SMI

estimate ŜMI(Z). Next, we randomly permute {yi}ni=1 and form a shuffled dataset Z̃ =
{(xi,yτ(i))}ni=1, where τ(·) is a randomly chosen permutation function. Then we run LSMI



Least-Squares Independence Test 5

again using the randomly shuffled dataset Z̃, and obtain an SMI estimate ŜMI(Z̃). Note
that the random permutation eliminates the dependency between x and y (if exists), so

ŜMI(Z̃) would take a value close to zero.
This random permutation procedure is repeated many times, and the distribution of

ŜMI(Z̃) under the null-hypothesis (i.e., x and y are independent) is constructed. Fi-

nally, the p-value is approximated by evaluating the relative ranking of ŜMI(Z) in the

distribution of ŜMI(Z̃). We refer to this procedure as the least-squares independence test
(LSIT).

A MATLAB R⃝ implementation of LSIT is available from

‘http://sugiyama-www.cs.titech.ac.jp/∼sugi/software/LSIT/’.

3 Experiments

In this section, we report experimental results.

3.1 Numerical Illustration

First, we illustrate how the proposed LSIT method behaves using the following toy
datasets with one-dimensional input x and one-dimensional output y:

(A) Regression: For x ∼ U(−20, 20) where U(a, b) denotes the uniform distribution on
(a, b),

y ∼

U(−1, 1) (Independent),

N(sin(20x/π), 1) (Dependent),

where N(µ, σ2) denotes the normal distribution with mean µ and variance σ2.

(B) Classification: For y ∼ B(0.5) where B(p) denotes the binomial distribution on
{−1,+1} with probability of having +1 being p,

x ∼

0.5N(−1, 1) + 0.5N(1, 1) (Independent),

N(y, 1) (Dependent).

Examples of realized samples are plotted in Figure 1 for n = 100, where {xi}ni=1 and

{yi}ni=1 are normalized to have unit variance. Figure 2 depicts the distributions of ŜMI(Z̃)

and the value of ŜMI(Z). The graphs show that reasonable p-values were obtained for
all the four cases. Figure 3 depicts the p-values and the frequency of accepting the null
hypothesis (i.e., x and y are independent) as functions of the sample size n. The graphs
show that LSIT works reasonably well.
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Figure 1: Toy datasets.

3.2 Performance Comparison

Here we compare the performance of LSMI and HSIC under the common permutation-
test framework. HSIC is the state-of-the-art measure of statistical independence utilizing
Gaussian kernels [4]. The performance of HSIC depends on the choice of the Gaussian
width, and to the best of our knowledge, there is no theoretically justified method to
determine the kernel width. Here we use a standard heuristic of setting the Gaussian
width to the median distance between samples, which was also adopted in the original
paper [4].

We generate data samples by[
x
y

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x′

y′

]
,

where

x′ ∼ 0.5N(−1, 1) + 0.5N(1, 1),

y′ ∼ 0.5N(−2, 1) + 0.5N(2, 1).
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Figure 2: Distributions of ŜMI(Z̃) (randomly shuffled samples) for the toy datasets. ‘×’

denotes the value of ŜMI(Z) (original samples).
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Figure 3: Experimental results for the toy datasets. Left: Mean and standard deviation
of p-values over 100 runs. Right: The frequency of accepting the null hypothesis over 100
runs under the significance level 0.05.
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Thus, (x, y) are rotation of (x′, y′) by angle θ. We conduct experiments for θ = 0 (i.e., x
and y are independent) and θ = π/8 (i.e., x and y are dependent). Data samples {xi}ni=1

and {yi}ni=1 are normalized to have unit variance (see Figure 4).
The results plotted in Figure 5 show that the proposed LSIT has comparable type-I

error (rejecting correct null-hypotheses) to HSIC, with far smaller type-II error (accepting
incorrect null-hypotheses).

Next, we vary the Gaussian width of HSIC and evaluate how the performance is
changed. In Figure 5, ‘HSIC(c)’ denotes HSIC with Gaussian width multiplied by c.
The results show that, although the type-I error does not really change with respect
to c, the type-II error is heavily affected by the choice of the Gaussian kernel width.
For this dataset, the median heuristic does not work well, and c = 1/2 works the best.
However, the optimally-tuned HSIC is still outperformed by the proposed LSIT, which
is automatically tuned based on cross-validation and does not involve manual parameter
tuning.

Finally, we use the MNIST handwritten digit dataset for further performance eval-
uation. Each digit image (representing an integer in {0, 1, 2, . . . , 9}) consists of 784
(= 28 × 28) pixels, each of which takes an integer value between 0 to 255 represent-
ing its intensity level in gray-scale. Here, we label the data as ‘small’ for digits ‘0’, ‘1’,
‘2’, ‘3’, and ‘4’, and ‘large’ for digits ‘5’, ‘6’, ‘7’, ‘8’, and ‘9’. We randomly choose 250
samples and randomly shuffle the label of 250(1− η) samples. Thus, increasing η from 0
to 1 corresponds to increasing the dependence between digit patterns and labels.

The results are plotted in Figure 6, showing that the proposed LSIT has slightly larger
type-I error (i.e., lower acceptance rate when η = 0) than HSIC, but the type-II error
of LSIT is slightly smaller than HSIC (i.e., lower acceptance rate when η > 0). For this
dataset, the optimally-tuned HSIC (c = 1/2) slightly outperforms automatically-tuned
LSIT.

4 Discussions and Conclusions

We proposed a novel non-parametric method of independence test based on an estimator
of a squared-loss variant of mutual information called least-squares mutual information [9].
The proposed method, which we called the least-squares independence test (LSIT), can
overcome the limitation of the state-of-the-art method, the Hilbert-Schmidt independence
criterion (HSIC) [4], which is not equipped with a model selection procedure of the
Gaussian kernel width. Through experiments, we confirmed that the proposed LSIT
compares favorably with the HSIC-based independence test.
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Figure 4: Rotation datasets. x and y are independent if θ = 0, and they are dependent
when θ = π/8.
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Figure 5: Experimental results for the rotation datasets. Frequency of accepting the null
hypothesis over 100 runs under the significance level 0.05 is depicted.
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Figure 6: Experimental results for the MNIST datasets. Frequency of accepting the null
hypothesis over 50 runs under the significance level 0.05 is depicted.
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